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Under the Direction of Gengsheng Qin 

 

ABSTRACT 

 

Diagnostic testing is essential to distinguish non-diseased individuals from diseased 

individuals. The sensitivity and specificity are two important indices for the diagnostic accuracy 

of continuous-scale diagnostic tests. If we want to compare the effectiveness of two tests, it is of 

interest to construct a confidence interval for the difference of the two sensitivities at a fixed 

level of specificity. In this thesis, we propose two empirical likelihood based confidence 

intervals (HBELI and HBELII) for the difference of two sensitivities at a predetermined 

specificity level. Simulation studies show that when correlation between the two test results 

exists, HBELI and HBELII intervals perform better than the existing bootstrap based BCa, BTI 

and BTII intervals due to shorter interval lengths. However, when there is no correlation, BCa, 

BTI and BTII intervals outperform HBELI and HBELII intervals due to better coverage 

probability in most simulation settings.  
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Chapter 1 Introduction 

 
Diagnostic tests play a key role in modern medicine by screening a specific population 

for evidence of disease. The interpretation to the result of a diagnostic test depends on the 

discriminatory accuracy of the test to distinguish diseased patients from non-diseased subjects 

(Shapiro, 1999). Sensitivity and specificity are two measurements to describe the discriminatory 

accuracy of a test, which are defined as the probability of the test correctly identifying the 

diseased and non-diseased subjects respectively. 

 A diagnostic test is named continuous, dichotomous, or ordinal test depending on 

whether the test generate a continuous result (e.g. blood pressure), a dichotomous outcome (e.g. 

positive or negative), or an ordinal conclusion (e.g. confidence rating for presence of disease-

definitely, probably, possibly, probably not, definitely not) (Shapiro, 1999). The main focus in 

this thesis is on continuous-scale diagnostic tests. 

In continuous-scale diagnostic tests , it is common to define a threshold or a cut-off point 

γ  and classify the subject as diseased if the test result Y is greater than or equal to γ  and non-

diseased if the test result X is less than γ . Thus, sensitivity and specificity are defined for each 

cut-off point γ  as: 

( ) 1 (

( ) ( )

R P Y G

Sp P X F

),

,

γ γ

γ γ

= ≥ = −

= < =
                                                     (1-1) 

respectively, where G and F are the distribution functions of Y and X respectively.  Let 

 be the test results of a random sample of non-diseased subjects, and Y  

be the test results of a random sample of diseased subjects.  As we can see, when 

mXXX ,...,, 21 nYY ,...,, 21

γ  decreases, 
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sensitivity increases but specificity decreases; as γ  increases, specificity increases at the expense 

of sensitivity. Therefore, there is a compromise between sensitivity and specificity when cut-off 

point changes, which is accounted for assessing discriminatory accuracy.  From equation (1-1), 

the relationship between sensitivity and specificity can be set up without knowing the exact value 

of cut-off pointγ .  Let the specificity of a test be p ( 10 ≤≤ p

)( pR

), the corresponding sensitivity of 

the test is 

))p((1)( 1FGpR −−=  ,                                                      (1-2) 

where  is the inverse function of F. 1−F

Using equation (1-2), we can estimate the sensitivity of a test at a fixed level of 

specificity based on test results from the diseased and non-diseased subjects. It is also of interest 

to construct confidence intervals for the sensitivity . However, if we have two (or more) 

continuous-scale diagnostic tests to the same set of subjects, some of whom are non-diseases, 

some diseased, we may be more interested in knowing which test is better, especially when only 

a particular value of specificity is relevant (e.g. 70%, 80%, 90%). There are studies in literature 

for comparing the accuracy of two or more diagnostic tests, including comparing ROC curves 

and comparing summary accuracy indices (such as AUC, partial AUC, sensitivity and 

specificity). Some studies used ‘unpaired’ design, in which each diagnostic test is applied to a 

different group of subjects. The other studies utilized paired design, in which the diagnostic tests 

are applied to the same subjects (Shapiro, 1999). We focus on the comparison of sensitivities of 

two tests at a common specificity in this thesis.  

Greenhouse and Mantel (1950) provided normal-theory that a diagnostic test has at least 

a specified sensitivity (e.g. 0.9) with specificity higher than a specified value (e.g.≥ 0.95). 

Based on the result of Greenhouse and Mantel, Linnet (1987) proposed both parametric and non-

≥
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parametric methods for constructing confidence intervals for the sensitivity of a test at a fixed 

value of specificity, accounting for the random variation associated with the estimated cut-off 

point. Wieand et al. (1989) studied asymptotic behaviors of these non-parametric procedures and 

generalized them to a comparison of two weighted average of sensitivities. Their theory can be 

used to construct a normal approximation based confidence interval (WGJ interval) for the 

difference between two sensitivities. Qin et al. (2006) proposed three new bootstrap based 

intervals (BCa, BTI, BTII) that have better coverage accuracy than the WGJ interval.  

Empirical likelihood (EL) (Owen, 1990, 2001) is a popular non-parametric method 

traditionally used for providing confidence intervals for means. The EL method has many 

advantages over other non-parametric methods. For example, it has better small sample 

performance than approaches based on normal approximation; empirical likelihood based 

confidence regions are range preserving and transformation respecting; the regularity conditions 

for empirical likelihood based methods are weak and natural. However, the empirical likelihood 

method has not been used widely in the study of accuracy of diagnostic tests.  Qin (2007) 

proposed empirical likelihood based confidence intervals for the sensitivity of a single test at a 

fixed level of specificity. In this thesis, we are going to expand Qin’s finding (2007) in one 

continuous-scale test to construct EL-based confidence intervals for the difference between the 

sensitivities of two continuous-scale tests at a fixed level of specificity.  

The thesis is organized as follow. In Chapter 2, we review some existing methods for the 

interval estimation of the difference between two sensitivities. In Chapter 3, we propose new 

hybrid empirical likelihood and bootstrap confidence intervals for the difference between two 

sensitivities at a pre-determined specificity, by using the asymptotic scaled chi-square 

distribution of the empirical likelihood ratio statistic. In Chapter 4, simulation studies are 

  
 
 



www.manaraa.com

 4 
 

conducted to compare the relative performance of the proposed empirical likelihood based 

intervals with the existing bootstrap intervals (BCa, BTI, and BTII). In Chapter 5, the new 

empirical likelihood based confidence intervals for the difference between two sensitivities are 

applied to a real example. A discussion is given in Chapter 6, and simulation tables and S-plus 

code are provided in the Appendix I and II. 
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Chapter 2 Existing methods 

 

For two continuous-scale diagnostic tests, it is of interest to compare their sensitivities at 

a predetermined level of specificity. In this chapter, we give a review of the existing normal-

approximation based interval proposed by Wieand (1989) and three bootstrap based intervals 

recently proposed by Qin et al. (2006) for the difference between two sensitivities at a fixed level 

of specificity.  

2.1 Normal-approximation-based interval  
 

Greenhouse and Mantel (1950) and Linnet (1987) proposed non-parametric procedures 

for the comparison of two sensitivities at a fixed level of specificity. Wieand et al. (1989) studied 

asymptotic behaviors of these non-parametric procedures and generalized them to a comparison 

of two weighted average of sensitivities. 

Let T  and T  be two diagnostic tests that yield continuous measurements. It is assumed 

that both tests are performed on the same m controls (non-diseased) and n cases (diseased). 

 are i.i.d. bivariate outcomes from the population with a joint distribution 

 that represents the non-diseased group, 

1

1=

2

miXX ii ,...,2,),,( 21

),( 21 xxF njYY jj ,...,2,1),,( 21 =  are i.i.d. bivariate 

outcomes from the population with a joint distribution G  that represents the diseased 

group. The marginal distribution functions of and  are denoted by  and G  

respectively,  For a given cut-off point

),( 21 yy

kYkX )( ik xF )( jk y

.2,1=k γ , the sensitivity and specificity of the test 

are defined by 2,1, =kTk

                ( ) 1 ( ), ( ) ( )k k k k k kR P Y G Sp P X Fγ γ γ= ≥ = − = < = γ  ,                                 (2-1) 
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respectively. Thus, the sensitivity of test T  at a fixed value of specificityk p , is  

1( ) 1 ( ( ))k k kR p G F p−= − , 

where . The parameter of interest is the difference between two 

sensitivities at the same fixed value of specificity , 

2,1},)(:inf{)(1 =≥=− kptFtpF kk

0p

                                             0 1 0 2( ) ( ) (D p R p R p0 )= −  .                                                   (2-2) 

Let  be the empirical distribution of , based on the sample , and  

 be the empirical estimate for the p-th quantile of  , 2

kĜ kG kmk XX ,...,1

)(ˆ 1 pFk
−

kF ,1=k , based on the sample 

. The non-parametric estimator for  proposed by Linnet (1987) and Wieand et al. 

(1989) is given as follows: 

knk YY ,...,1 0(D p )

                                                      ,                                                    (2-3) 0 1 0 2
ˆ ˆ ˆ( ) ( ) (D p R p R p= − 0 )

)where 1
0 0

ˆˆ ˆ( ) 1 ( ( )k k kR p G F p−= − .  

Let N=m+n. Wieand et al. (1989) showed that 

                                             1/ 2 2
0 0

ˆ( ( ) ( )) (0, )dN D p D p N σ− → ,                                          (2-4) 

where 

12
2
2

2
1

2 2σσσσ −+= , 

2 1
2 1 1 0

0 0 0 0 2 1
0

( ( )(1 ) ( )(1 ( )) (1 )
( ( )

k i
k k k

k i

g F pR p R p p p )
)f F p

σ λ λ
−

− −
−= − − + −    ( ), 2,1=k

+−−= −−−−− ))](())(())(),(({)1( 0
1

220
1

110
1

20
1

1
1

12 pFGpFGpFpFGλσ  

1 1
1 1 1 2 1 1 0 2 2 0

1 0 2 0 0 1 1
1 1 0 2 2 0

( ( )) ( ( )[ ( ( ), ( )) ]
( ( )) ( ( )

g F p g F pF F p F p p )
)f F p f F p

λ
− −

− − −
− −− , 

/( )m m nλ = + , 
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where  and are the density functions of  and G respectively. kf kg kF k

If a good estimate for  is available, the normal approximation equation (2-4) can be 

used to construct a confidence interval for the difference between two sensitivities at the same 

fixed level of specificity. However, the estimation of  requires the estimation of density 

functions  and , the estimation of bivariate distribution functions  and , 

and the estimation of quantiles . Therefore, the performance of the normal approximation 

based interval is very sensitive to the choice of the smoothing parameters in density and 

distribution estimations. Selection of satisfactory smoothing parameters in this context is 

problematic. 

2σ

Fk
−

2σ

kf kg ),( 21 xxF ),( 21 yyG

)(1 p

2.2 Bootstrap based intervals  
 

Qin et al. (2006) proposed three intervals called BCa, BTI and BTII intervals for the 

difference between sensitivities of two diagnostic tests at a fixed value of specificity by using 

bootstrap method. The major advantage of these intervals over the normal approximation based 

interval is that no density and distribution estimation is needed. And the new intervals are 

computationally easy to implement in practice. 

The difference between two sensitivities at the same fixed value of specificity  is the 

difference between two proportions:   

0p

1 1
0 1 0 2 0 1 1 0 2 2 0( ) ( ) ( ) ( ( )) ( ( )K KD p R p R p P Y F p P Y F p− −= − = ≥ − ≥ ) . 

If were known, an obvious estimator of would be the difference between the observed 

sensitivities at -th quantiles  and , which would be defined as 

kF 0( )D p

(1
2 pF −

0p )( 0
1

1 pF − )0
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1
1 1 0 2 2 0

0 [ ( )] [ ( )]
1 1

1 1( )
j j

n n

Y F p Y F p
j j

D p I I
n n−≥

= =

= −∑ ∑%
1−≥

)

,                       (2-5) 

where  is the indicator function of A. We can also regard  as the difference between 

two sample proportions of binomial distributions with proportions

AI 0(D p%

0( )kR p ,  However, 

’s are unknown, by replacing  by  in equation (2-5), we acquire an 

estimator  for .  

.2,1=k

kF )( 0
1 pFk
− )(ˆ

0
1 pFk
−

0
ˆ ( )D p 0(D p )

                                              1
1 1 0 2 2 0

ˆ0 [ ( )] [ ( )]
1 1

1 1ˆ ( )
j j

n n

Y F p Y F p
j j

D p I I
n n−≥

= =

= −∑ ∑ 1ˆ −≥

)

)

)

0 )

                                (2-6) 

Because the indicator variables  are not independent, 

 is no longer the difference between two simple binomial proportions. Depending on 

whether there is a correlation between the test results from two diagnostic tests, Qin et al. (2006) 

proposed the following different procedures for the confidence intervals of  by combining 

bootstrap method with the technique provided by Agresti and Caffo (2000). 

)](ˆ[)](ˆ[)](ˆ[ 0
1

10
1

120
1

11
,...,,

pFYpFYpFY inii
III −−− ≥≥≥

0
ˆ (D p

0( )D p

2.2.1 Paired uncorrelated samples 
 

If the test results from two diagnostic tests are conditionally uncorrelated,  can be 

considered as the difference between two independent sample proportions. Qin et al. (2006) 

proposed the following estimator for  instead of :  

0
ˆ (D p

0( )D p 0
ˆ (D p

0 1 0 2
ˆ ˆ ˆ( ) ( ) (D p R p R p= − ,                                                      (2-7) 

where 

                       
1

0

2
ˆ 1 / 2[ ( )]1

0 2
1 / 2

/ 2
ˆ ( ) , 1, 2kj i

n

Y F pj
k

I Z
R p k

n Z
α

α

− −≥=

−

+
=

+

∑
=                                  (2-8) 
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2
2/1 α−Z  is the (1 2/α− )-th quantile of standard normal distribution. The procedure for computing 

the bootstrap variance is as follows: 

1. For each k , draw a resample of size n, Y  with replacement from the 

diseased patient sampleY , and a separate resample of size m,  

with replacement from the non-diseased patient sample . 

2,1= ),...,1(* njkj =

(iX ki =

),...,1( njkj = ),...,1(* miX ki =

),...,1 m

2. Calculate the bootstrap versions of 0
ˆ ( )kR p ( 2,1=k ) and , 0

ˆ ( )D p

* * 1
0

2
ˆ 1 / 2[ ( )]1*

0 2
1 / 2

/ 2
ˆ ( ) , 1, 2kj k

n

Y F pj
k

I Z
R p k

n Z
α

α

− −≥=

−

+
= =

+

∑
                              

    , * * *
0 1 0 2

ˆ ˆ ˆ( ) ( ) ( )D p R p R p= − 0

where  is  the * 1

0
ˆ ( )kF p

−

0p -th sample quantile based on the bootstrap resample . sX ki
*

3. Repeat the first two steps B times to obtain the set of bootstrap replications: 

*
0

ˆ{ ( ) : 1, 2,..., },kbR p b B=  and { *
0

ˆ ( ) : 1, 2,..., },bD p b B= 2,1=k . 

Then, the bootstrap estimate V for the variance of  is defined as follows: *
0

ˆ (D p )

*
2

*
1

* VVV += , 

where 

* * *
0 0

1

1 ˆ( ( ) ( ))
1

B

kb k
b

V R p R
B =

= −
− ∑ 2p ,1, 2=k  

*
0 0

1

1 ˆ( ) ( )
B

k
b

*
kbR p R

B =

= ∑ p ,1, 2=k  

The above procedure can also be used to the case of two independent samples with 

different sample size. 
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2.2.2 Paired dependent samples 
 

When two diagnostic tests are applied to the same patients, the test results from two 

diagnostic tests are most likely correlated. Qin et al. (2006) proposed to use the following 

estimates for the sensitivities: 

1
0

ˆ[ ( )]1
0

1
ˆ ( ) , 1, 2

2
kj k

n

Y F pj
k

I
R p k

n

−≥=
+

= =
+

∑
. 

The bootstrap estimate V for the variance of  is defined as follows: *
0

ˆ ( )D p

*
12

*
2

*
1

* 2VVVV −+= , 

where V  ( 2 ) are defined as before, and *
k ,1=k

                           * * * *
12 1 0 1 0 2 0 2 0

1

1 ˆ ˆ( ( ) ( ))( ( ) (
1

B

b b
b

p R p R p R
B =

= − −
− ∑ * ))pV R  

2.2.3 New bootstrap intervals for  0( )D p

 
Qin et al. (2006) proposed three new intervals for . The first two (10( )D p 100)α−  per 

cent confidence intervals for  are bootstrap intervals based on the bootstrap variance 

estimate V . They are defined as follows: 

0(D p )

*

(i) The first one, called BTI interval, is 

* *
0 1 / 2 0 1 / 2

ˆ ˆ( ( ) , ( ) )D p z V D p z Vα α− −− +   

where  is defined by equation (2-7) 0
ˆ (D p )

(ii) The second one, called BTII interval, is 

* * *
0 1 / 2 0 1 / 2( ( ) , ( )D p z V D p z Vα α− −− + * )  
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Where * *
0 01

1 ˆ( ) ( )B
bb

D p D p
B =

= ∑  

The above two intervals require variance estimation of . The third interval for 

 proposed by Qin et al. (2006) is a BCa-type bootstrap interval in which the direct 

variance estimation is not needed: 

0
ˆ ( )D p

0(D p )

))* *
ˆ ˆ( / 2) 0 ( (1 / 2)) 0

ˆ ˆ( ( ), (B BD p D pα α− , 

where 

)
)(1

(ˆ
α

α

α
α

zw
zww
+−

+
+Φ=  

*
0 0

1
ˆ ˆ[ ( ) ( )]

1

1( )
b

B

D p D p
b

w I
B

−
≤

=

= Φ ∑  

2/3
1

2
1

3

)(6
1

∑
∑

=

== n

k k

n

k k

l

l
α  

1 1
1 1 0 2 2 0

ˆ ˆ 1 0 2 0[ ( )] [ ( )]
ˆ ˆ( ) ( (

K K
k Y F p Y F p

l I I R p R p− −≥ ≥
= − − −) ( ))

)

, 

and  is the standard normal distribution function, and is the b-th ordered value among 

. 

Φ

0(D p

*
( ) 0

ˆ (bD p

*ˆ{ ), 1, 2,..., }
b

b B=

Through simulation study, Qin et al. (2006) showed that BTI and BTII intervals perform 

better than the normal approximation based interval for independent samples, and BCa interval 

performs better than the normal approximation based interval for paired dependent samples. In 

addition, BTI and BTII intervals are computationally simpler than the normal approximation 

based interval. Therefore, we only use BCa, BTI and BTII intervals as a comparison in this 

thesis. 
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Chapter 3 Hybrid empirical likelihood based intervals for the difference 

between two sensitivities 

 

We recently developed an empirical likelihood based method to construct the confidence 

interval for the difference between two sensitivities from two diagnostic tests at a fixed level of 

specificity. An introduction of this method is given in this chapter. 

Pepe (2003) defined a placement value for a given test value Y from a diseased subject as 

)(1 YFU −= . 

This value is the proportion of the non-diseased population with a test value greater than Y. It 

marks the placement of Y within non-diseased distribution. 

It is evident that 

1( ( 1 )) ( ( ) ) ( ( )) (E I U p P F Y p P Y F p R p−≤ − = ≥ = ≥ = ) . 

For two diagnostic tests  T  and T  that yield continuous measurements, we have 1 2

2,1),(1 =−= kyFU kkk ; 

1 1[ ( 1 )] ( ( )) 1 ( ( )) ( )k k k k k kE I U p P Y F p G F p R p− −≤ − = ≥ = − = . 

Therefore, 

1 2 1 2( ) ( ) ( ) [ ( 1 )] [ ( 1 )]D p R p R p E I U p E I U p= − = ≤ − − ≤ −  

Based on this relationship between  and the placement value U ’s, an empirical 

likelihood procedure is derived for the difference between two sensitivities. Let 

)( pD k
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1 2( , ,..., ), 1, 2k k k knP p p p k= =  be two probability vectors, i.e,. 
1

1
n

kj
j

p
=

=∑

1 1
1

j j
j

p V
=

= ∑

),p

 and  for all j. The 

profile EL for D(p) can be defined as 

0≥kjp

2 (
n

j D p−
1,2 1

( ( )) sup{
n

kj
k j

L D p p
= =
∏∏

( ) (kj kjW p I U

( ) (kj kjV p I U

kF )2,1( =k

kF̂

1,2 1

( ( )) sup{
n

kj
k j

L D p p
= =
∏∏

ˆ ˆ( ) (kj kjW p I U

ˆ ˆ( ) (kj kjV p I U

( ( )) 2(l D p

kF

2 (
n

j D p−1 1
1

j j
j

p V
=

= ∑

),p

1 2ˆ ˆ ( )))j jtw p−

2
1 1 1

: 1, ( ) 0, ), 1, 2}
n n n

kj kj kj j
j j j

p p W p p V k
= = =

= = =∑ ∑ ∑ , =

(3-1) 

where            

1 ) ( ) ( ) (k kj kp R p V p R= ≤ − − ≡ −  

1 ), 1, 2.p k= ≤ − =  

The placement values,U ’s kj )2,1( =k , depend on the unknown distribution functions 

’s  of the non-diseased populations. Therefore, by replacing  by its empirical 

distribution , we get an adjusted empirical likelihood for D(p): 

2
1 1 1

ˆ ˆ ˆ: 1, ( ) 0, ), 1, 2}
n n n

kj kj kj j
j j j

p p W p p V k
= = =

= = =∑ ∑ ∑ ˆ =  

where            

ˆ1 ) ( ) ( ) (k kj kp R p V p R= ≤ − − ≡ −  

1 ), 1, 2.p k= ≤ − =  

By using the Lagrange multiplier method, we get the corresponding log-EL ratio statistic: 

1 1
log(1 2 ( )) log(1 2

nn

j j
tw p

= =

= + +∑ ∑ ,         (3-2) 

where t R are determined by 1 2, ( ), ( )p R p
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1 1

1 1 1

2 2

1 2 2

1 2

1 11 1 2 2

ˆ ( )1 0ˆ1 2 ( ( ))
ˆ ( )1 0ˆ1 2 ( ( ))

ˆ ˆ1 1 ( )ˆ ˆ1 2 ( ( )) 1 2 ( ( ))

n
j

j j

n
j

j j

n n
j j

j jj j

V R p
n t V R p

V R p
n t V R p

V V
D p

n nt V R p t V R p

=

=

= =

 −
=

+ −


− =
− −


 − = + − − −

∑

∑

∑ ∑

 

                  

Qin (2007) established the following theorem for the asymptotic distribution of the  

log-EL likelihood ratio statistic. 

 

Theorem 3.1. If  is the true value of )(0 pD 1 2( ) ( ) ( )D p R p R p= −  at a fixed level p of specificity, 

then the limiting distribution of ), defined by equation (3-2), is a scale chi-square 

distribution with one degree of freedom. That is, 

)(( pDl

2
0 1( ) ( ( )) dr p l D p χ→ , 

where the scale constant s )( pr  i

1 1 2 2
2

( )(1 ( )) ( )(1 ( ))( )
(1 )

R p R p R p R pr p
λ σ

− + −
=

−
. 

 

The scale constant  in Theorem 3.1 is still unknown. In order to construct 

confidence intervals for , we propose to use bootstrap method to estimate . The 

procedure is as follows: 

)( pr

)(D p )( pr

Step 1: Draw resample of size m, with replacement from the non-diseased sample 

and a separate resample of size n, Y with replacement from the diseased sample Y  

,'* sX ki

,'* skjsX ki ' skj ' .
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Step 2: Calculate the bootstrap versions *ˆ ( )kR p  of ( ), 1, 2.kR p k =   

2
2/1

1
2

2/1
1**

*
2/)([

)(ˆ
α

α

−

− −
−

+

+≥
= ∑

Zn
ZpFYI

pR
nz

i kki
k

)

2,1=k . 

Setp 3: Repeat Steps 1-2  B ( )  times, we get {150B ≥ * *
1 2

ˆ ˆ( ), ( ) : 1... }b bR p R p b B=  and 

* *

1

1 ˆ( ( ) ( ))
1

B

k kb
b

V R p R
B =

= −
− ∑ * 2

k p ,1, 2=k , 

                                        * * * *
12 1 1 2 2

1

1 ˆ ˆ(( ( ) ( )( ( ) ( ))
1

B

b b
b

V R p R p R p
B =

= − −
− ∑ *R p , 

                                          V , *
12

*
2

*
1

* 2VVV −+=

where *
0 0

1

1 ˆ( ) (
B

k
b

* )kbR p R
B =

= ∑ p , k=1,2. 

  

Hence, the scale constant  can be consistently estimated by  )( pr

*

*
2

*
2

*
1

*
1*

1 *
))(1)(())(1)(()(

Vn
pRpRpRpRpr −+−

= ,  

or 

* 1 1 2 2
2 *

ˆ ˆ ˆ ˆ( )(1 ( )) ( )(1 ( ))( )
*

R p R p R p R pr p
n V

− + −
= . 

By using these estimates for , we propose two hybrid bootstrap and empirical 

likelihood based confidence intervals for . 

)( pr

(D p)

 The first one, called HBELI interval, is defined by 

                                             { },)1())(()(:)( 2
1

*
1 αχ −≤pDlprpD                                      (3-5) 

where 2
1 (1 )χ α−  is the (1 )α− -th quantile of 2

1 .χ  

  

  
 
 



www.manaraa.com

 16 
 

 

The second one, called HBELII interval, is defined by 

                                         { }* 2
2 1( ) : ( ) ( ( )) (1 )D p r p l D p χ α≤ − .                                  (3-6) 
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Chapter 4 Simulation 

 
In this chapter, we conduct two simulation studies using bivariate normal distribution and 

exponential distribution to evaluate coverage accuracy and interval length of the newly proposed 

intervals for , the difference of the two sensitivities, when the specificity p is taken to be 

0.70, 0.80 or 0.90 in finite-sample sizes. In both studies, we generated 1000 random samples of 

size n from  for test responses of diseased patients, and another set of independent 

random samples of size m from  for test responses of non-diseased patients. In this 

thesis, we didn’t use the normal approximation based interval as a comparison because Qin et al. 

(2006) have already shown that BTI and BTII intervals perform better than the normal 

approximation based interval for independent samples, and BCa performs better than the normal 

approximation based interval for paired dependent samples, and these three intervals are 

computationally much simpler than the normal approximation based interval. 

)( pD

,( 1yG )2y

),( 21 xxF

 In the first study, G is chosen to be a bivariate normal distribution having mean ),( 21 yy

11)( µ=YE , 22 )( µ=YE  and with a common standard deviation 2 and correlation ρ ; is 

chosen to be a bivariate normal distribution having means 

),( 21 xxF

0)( 1 =XE ,  and with a 

common standard deviation 1 and correlation 

0)( 2 =XE

ρ . ρ  is chosen as 0 and 0.5 respectively. Thus,   

1( ) 1 {( ( ) ) / 2}k kR p p µ−= −Φ Φ −  for k=1,2. 

For =0, we choose )( pD 21 µµ =  such that the sensitivity ( )kR p  of the test T varies 

over the points 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, respectively . 

)2,1( =kk

In the second study, the distributionsG ,  are chosen to be different 

bivariate exponential distributions that have exponential distributions as their marginal 

),( 21 yy ),( 21 xxF
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distributions. Depending on the possible correlation between the test results from two diagnostic 

tests, we use two different procedures to generate the random samples of test response.  

First we choose the correlation as zero ( ρ =0), and then we generate two independent 

samples,  and , from standard exponential distribution; and two 

independent samples,  and  from exponential distributions with rates 

mXXX 11211 ,...,,

Y11

mXXX 22221 ,...,,

nY1,..., YY 2221,Y12, n2Y,...,

21,λλ  , respectively. Therefore,  

( ) exp( log(1 )],k kR p pλ= −   for .2,1=k  

Similar to the first simulation study, we choose )2,1(, =klkkλ  such that = 0 as the 

sensitivity 

)( pD

( )iR p  of the test T varies over the points 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 

0.40, 0.30, 0.20, 0.10 respectively.  

)2,1( =ii

Secondly, we choose a positive correlation for the bivariate exponential distribution 

( ρ >0).  We first generate random sample,U , from an exponential distribution with 

rate 0.5, for and random samples, V , from an exponential distribution with 

rate , for i ; and a random sample, V  from an exponential distributions with 

rate 0.02. Then the simulated test responses for a non-diseased patients are 

which are random samples from two standard exponential 

distributions with correlation 

kmkk UU ,...,, 21

knkk VV ,...,, 21

nVV 33231 ,...,,

;3,2,1=k

.2,1=

),, 3 kU iki

il

= ,,...,2,1,2,1min( mi ==UX ki

ρ ; and those for diseased patients are 

 which are random samples from two exponential 

distributions with correlation 

,,...,2,1,2,1min( njV =),, 3 kV j =Ykj kj=

ρ and rates 02,0,02,0 21 ++ ll ,respectively. Under this setting, 

( ) exp[( 0.02)( log(1 )],k k kR p l pλ= + − for .2,1=k  
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We choose )2,1(, =klkkλ  such that =0 as the sensitivity )( pD ( )kR p  of the test T k  

varies over the points 0.95, 0.90, 0.80, 0.70 respectively.  

( 1, 2)k =

In the bootstrap step, we draw B=150 bootstrap re-samples from the original samples. We 

construct 95% confidence intervals for D(p). The results of the simulation study are shown in 

Table I to Table VI in Appendix I. From these tables, the following observations are made. 

(1) When the correlation ρ =0 and D(p)=0, the BCa, BTI and BTII intervals have better 

coverage probability, but HBELI and HBELII intervals have shorter interval length. 

(2) When the correlation ρ >0 and D(p)=0,  the five intervals have similar coverage 

probability, but HBELI and HBELII intervals have shorter interval length.  

(3) When the correlation ρ  is positive, bigger sample sizes (m,n≥ 150 ) are needed to get 

better coverage accuracy for all the intervals. 

In summary, when correlation exists, the hybrid empirical likelihood and bootstrap based 

intervals HBELI and HBELII perform better than the bootstrap intervals due to the shorter 

interval length. When there is no correlation, the bootstrap based intervals BCa, BTI, BTII 

perform better than the HBELI and HBELII intervals due to better coverage probability.  
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Chapter 5 Dermatoscope example 
 

Melanoma is a malignant tumor of melanocytes which are found predominantly in skin 

but also in the bowel and the eye. It is one of the rarer types of skin cancer but causes the 

majority of skin cancer related deaths. Around 160,000 new cases of melanoma are diagnosed 

worldwide each year, and it is more frequent in males and Caucasians, especially in Caucasian 

populations living in sunny climates than other groups. According to the WHO Report about 

48,000 melanoma related deaths occur worldwide per annum. Despite many years of intensive 

laboratory and clinical research, the sole effective cure is surgical resection of the primary tumor 

before it achieves a thickness greater than 1mm (Wikipedia 2007). Therefore, early diagnose of 

Melanoma is critical to increase the change to cure the disease. 

Dermatoscopy is a hand-held instrument with a dermatoscope, a magnifier with a light 

and a liquid medium between the instrument and the skin, thus illuminating the skin without 

reflected light. Dermatoscopy is a noninvasive diagnostic technique for the early diagnosis of 

melanoma and the evaluation of other pigmented and non-pigmented lesions on the skin that are 

not as well seen with the unaided eye. Stolz et al. (1994) studied the accuracy of clinical 

evaluations with or without the aid of Dermatoscopy in detecting malignant Melanoma (MM) by 

using the ABCD rule (Asymmetry, irregular border, different colors, and Diameter larger than 

6mm). In this study, two tests were used for detecting MM on the same subjects. The first test is 

the clinical assessment without the aid of dermatoscopy, and the second test is the clinical 

assessment with the aid of dermatoscopy. The data set we used here includes 21 patients with 

MM and 51 patients with benign melanocytic lesions. The goal is to find out whether the use of 

dermatoscopy can improve for detecting MM. We estimate the difference between two 

sensitivities of the two tests and construct confidence intervals for the difference by using BCa, 
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BTI, BTII, HBELI and HBELII methods.  The 95% confidence intervals for the difference 

between two sensitivities when the specificity is fixed at 0.9 or 0.95 respectively are shown in 

Appendix I Table V. 

All the confidence intervals from above five methods contain zero. In summary, we 

conclude that there is no significant advantage in adopting the clinical assessment with the aid of 

dermatoscopy in detecting MM. The same conclusion has been obtained in Qin et al. (2006). 
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Chapter 6 Discussion 

 
When a new method for continuous-scale tests is developed, comparing its effectiveness 

with existing methods is necessary.  Using the confidence intervals for the difference between 

two sensitivities of two tests is straightforward. In many cases, only a particular value of 

specificity is relevant (e.g., 70%, 80%, 90%). Therefore, it is of interest to construct a confidence 

interval for the sensitivity of the test at a fixed level of specificity. 

Qin et al. (2006) proposed three bootstrap-based intervals (BCa, BTI and BTII) for the 

difference between two sensitivities and showed that these intervals outperform the normal-

approximation-based interval. In this thesis, we have proposed another two hybrid empirical 

likelihood and bootstrap confidence intervals (HBELI and HBELII) for the difference between 

two sensitivities. Simulation studies show that when correlation exists, HBELI and HBELII 

intervals perform better than the existing bootstrap based intervals (BCa, BTI and BTII) due to 

shorter interval length. However, when there is no correlation, BCa, BTI and BTII intervals 

outperform HBELI and HBELII intervals due to better coverage probability in most simulation 

settings.  
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Appendix I: Simulation tables 
Table a- 1  Level of 95 per cent confidence interval for D(p)=0. Bivariate normal distribution with 0=ρ  
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

BCa    0.8200 0.3864 0.9312 0.4175 0.9331 0.4300
BTI       0.9030 0.4534 0.9557 0.4797 0.9584 0.4966
BTII       0.9080 0.4534 0.9645 0.4797 0.9701 0.4966
HBELI       0.8877 0.2591 0.8714 0.2421 0.8729 0.1902

(20,20) 

HBELII 0.8896      0.2591 0.8729 0.2421 0.8745 0.1903
BCa       0.8905 0.2892 0.9388 0.3101 0.9418 0.3222
BTI       0.9330 0.3191 0.9555 0.3382 0.9588 0.3535
BTII       0.9380 0.3191 0.9645 0.3382 0.9682 0.3535
HBELI       0.9191 0.2810 0.8714 0.2421 0.9178 0.1940

(50,50) 

HBELII 0.9203      0.2810 0.8729 0.2421 0.9189 0.1941
BCa       0.9105 0.2434 0.8886 0.2452 0.8944 0.2507
BTI       0.9430 0.2590 0.9280 0.2630 0.9420 0.2747
BTII       0.9460 0.2590 0.9350 0.2630 0.9440 0.2747
HBELI       0.9341 0.2490 0.9225 0.2205 0.9323 0.1795

(80,80) 

HBELII 0.9343      0.2490 0.9222 0.2205 0.9332 0.1795
BCa       0.9505 0.1942 0.9433 0.1969 0.9390 0.2054
BTI       0.9544 0.2003 0.9522 0.2037 0.9496 0.2136
BTII       0.9361 0.2003 0.9573 0.2037 0.9576 0.2136
HBELI       0.9413 0.1912 0.9312 0.1741 0.9364 0.1464

(150,150) 

HBELII 0.9413      0.1912 0.9308 0.1741 0.9366 0.1464
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Table a- 1 Level of 95 per cent confidence interval for D(p)=0. Bivariate normal distribution with 0=ρ (continued) 
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

(50,30)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.8635 
0.9110 
0.9220 
0.9067 
0.9061 

0.3318 
0.3753 
0.3753 
0.2866 
0.2866 

0.9360 
0.9561 
0.9667 
0.8956 
0.8957 

0.3308 
0.3614 
0.3614 
0.2590 
0.2590 

0.9418 
0.9603 
0.9687 
0.8896 
0.8899 

0.3511 
0.3842 
0.3942 
0.2035 
0.2035 

(100,80)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.9377 
0.9530 
0.9594 
0.9329 
0.9330 

0.2496 
0.2636 
0.2636 
0.2451 
0.2451 

0.9371 
0.9519 
0.957 
0.9273 
0.928 

0.2530 
0.2675 
0.2675 
0.2201 
0.2201 

0.9425 
0.9540 
0.9621 
0.9366 
0.9365 

0.2627 
0.2790 
0.2790 
0.1813 
0.1813 
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Table a- 2 Level of 95 per cent confidence interval for D(p)=0. Bivariate normal distribution with 5.0=ρ  
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

BCa    0.9667 0.4437 0.9623 0.4493 0.9646 0.4649
BTI       0.9180 0.3705 0.9193 0.3760 0.9212 0.3917
BTII       0.9407 0.3705 0.9448 0.3760 0.9470 0.3917
HBELI       0.9263 0.2848 0.9099 0.2554 0.9100 0.1909

(20,20) 

HBELII 0.9271      0.2848 0.9094 0.2554 0.9113 0.1910
BCa       0.9687 0.3183 0.9687 0.3225 0.9688 0.3347
BTI       0.9111 0.2479 0.9155 0.2525 0.9241 0.2647
BTII       0.9294 0.2479 0.9336 0.2525 0.9332 0.2647
HBELI       0.9538 0.2910 0.9425 0.2516 0.9413 0.1945

(50,50) 

HBELII 0.9534      0.2910 0.9425 0.2516 0.9414 0.1946
BCa       0.9719 0.2598 0.9752 0.2647 0.9696 0.2743
BTI       0.9114 0.1985 0.9122 0.2016 0.9115 0.2115
BTII       0.9264 0.1985 0.9247 0.2016 0.9315 0.2115
HBELI       0.9563 0.2556 0.9477 0.2266 0.9532 0.1789

(80,80) 

HBELII 0.9564      0.2556 0.9481 0.2266 0.9535 0.1789
BCa       0.9733 0.1958 0.9738 0.1991 0.9714 0.2066
BTI       0.9141 0.1460 0.9175 0.1485 0.9112 0.1558
BTII       0.9247 0.1460 0.9267 0.1485 0.9254 0.1558
HBELI       0.9714 0.1931 0.9563 0.1783 0.9534 0.1470

(150,150) 

HBELII 0.9716      0.1931 0.9561 0.1783 0.9541 0.1470
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Table a- 2 Level of 95 per cent confidence interval for D(p)=0. Bivariate normal distribution with 5.0=ρ  (continued) 
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

(50,30)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.9565 
0.9114 
0.9273 
0.9399 
0.9393 

0.3589 
0.2984 
0.2984 
0.3052 
0.3052 

0.9696 
0.9142 
0.9378 
0.9358 
0.9345 

0.3435 
0.2700 
0.2700 
0.2695 
0.2695 

0.9708 
0.9182 
0.9414 
0.9233 
0.9235 

0.3598 
0.2864 
0.2864 
0.2017 
0.2017 

(100,80) 
 
 
 
 

BCa 
BTI 
BTII 
HBELI 
HBELII 

0.9701 
0.9080 
0.9191 
0.9609 
0.9606 

0.2547 
0.1938 
0.1938 
0.2515 
0.2515 

0.9701 
0.9136 
0.9230 
0.9540 
0.9551 

0.2583 
0.1970 
0.1970 
0.2237 
0.2267 

0.9716 
0.9141 
0.9302 
0.9366 
0.9365 

0.2672 
0.2056 
0.2056 
0.1813 
0.1813 
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Table a- 3 Level of 95 per cent confidence interval for D(p)=0. Bivariate exponential distribution with 0=ρ  
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

BCa    0.9323 0.4553 0.9311 0.4484 0.9277 0.4430
BTI       0.9593 0.5367 0.9644 0.5311 0.9591 0.5303
BTII       0.9695 0.5367 0.9730 0.5311 0.9712 0.5303
HBELI       0.8425 0.2392 0.8714 0.2421 0.8978 0.0420

(20,20) 

HBELII 0.8443      0.2391 0.8729 0.2421 0.9041 0.0420
BCa       0.9390 0.3450 0.9370 0.3393 0.9358 0.3434
BTI       0.9632 0.3808 0.9576 0.3766 0.9580 0.3810
BTII       0.9703 0.3808 0.9668 0.3766 0.9688 0.3810
HBELI       0.8897 0.2660 0.8963 0.1508 0.9178 0.1940

(50,50) 

HBELII       0.8912 0.2660 0.897 0.1509 0.9178 0.1941
BCa       0.9393 0.2859 0.9360 0.2829 0.9435 0.2864
BTI       0.9550 0.3089 0.9550 0.3062 0.9605 0.3119
BTII       0.9613 0.3089 0.9617 0.3062 0.9688 0.3119
HBELI       0.9208 0.2449 0.9183 0.1474 0.9023 0.0100

(80,80) 

HBELII 0.9204      0.2449 0.9176 0.1474 0.9028 0.0100
BCa       0.9409 0.2168 0.9400 0.2154 0.9407 0.2170
BTI       0.9568 0.2299 0.9568 0.2287 0.9560 0.2322
BTII       0.9633 0.2299 0.9621 0.2287 0.9647 0.2322
HBELI       0.9387 0.1949 0.9299 0.1296 0.9192 0.0500

(150,150) 

HBELII 0.9389      0.1949 0.9302 0.1296 0.9200 0.0500
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Table a- 3 Level of 95 per cent confidence interval for D(p)=0. Bivariate exponential distribution with 0=ρ  (continued) 
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

(50,30)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.9283 
0.9581 
0.9662 
0.8694 
0.8689 

0.3767 
0.4348 
0.4348 
0.2690 
0.2690 

0.9325 
0.9555 
0.9671 
0.863 
0.8635 

0.3695 
0.4121 
0.4121 
0.1523 
0.1524 

0.8828 
0.9337 
0.9443 
0.8840 
0.8849 

0.4303 
0.4910 
0.4910 
0.0225 
0.0225 

(100,80) 
 
 
 
 

BCa 
BTI 
BTII 
HBELI 
HBELII 

0.9419 
0.9566 
0.9648 
0.9173 
0.9177 

0.2782 
0.2990 
0.2990 
0.2383 
0.2383 

0.9400 
0.9549 
0.9611 
0.9182 
0.9183 

0.2741 
0.2958 
0.2958 
0.1450 
0.1450 

0.9389 
0.9602 
0.9674 
0.8985 
0.8987 

0.2772 
0.3006 
0.3006 
0.0015 
0.0014 
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Table a- 4 Level of 95 per cent confidence interval for D(p)=0. Bivariate exponential distribution with 0≠ρ  (Using 0.02 to generate 
diseased random sample)  

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

BCa    0.9517 0.3842 0.9573 0.3748 0.9700 0.3713
BTI       0.9161 0.3312 0.9135 0.3266 0.9354 0.3248
BTII       0.9437 0.3312 0.9386 0.3266 0.9503 0.3248
HBELI       0.8618 0.0937 0.9005 0.0440 0.9358 0.0081

(20,20) 

HBELII 0.8648      0.0937 0.9005 0.0440 0.9364 0.0081
BCa       0.9565 0.2735 0.9670 0.2717 0.9664 0.2883
BTI       0.9047 0.2178 0.9202 0.2158 0.9153 0.2301
BTII       0.9194 0.2178 0.9320 0.2158 0.9323 0.2301
HBELI       0.9085 0.1566 0.9044 0.1039 0.9403 0.0500

(50,50) 

HBELII 0.9089      0.1566 0.9039 0.1039 0.9408 0.0580
BCa       0.9619 0.2238 0.9668 0.2232 0.9702 0.2376
BTI       0.8913 0.1743 0.9159 0.1734 0.9125 0.1843
BTII       0.9071 0.1743 0.9234 0.1734 0.9267 0.1843
HBELI       0.9319 0.1606 0.9103 0.1102 0.9493 0.0290

(80,80) 

HBELII 0.9321      0.1606 0.9088 0.1102 0.9488 0.0290
BCa       0.9659 0.1708 0.9669 0.1704 0.9737 0.1712
BTI       0.8990 0.1288 0.9108 0.1284 0.9250 0.1274
BTII       0.9058 0.1288 0.9195 0.1284 0.9358 0.1274
HBELI       0.9565 0.1301 0.9469 0.1026 0.9215 0.0480

(150,150) 

HBELII 0.9565      0.1302 0.9469 0.1026 0.9220 0.0480
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Table a- 4 Level of 95 per cent confidence interval for D(p)=0. Bivariate exponential distribution with 0≠ρ  (Using 0.02 to generate 
diseased random sample) (continued) 
 

Specificity=0.7   Specificity=0.8 Specificity=0.9
Sample size Method Coverage 

probability Length Coverage 
probability Length Coverage 

probability Length 

(50,30)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.9479 
0.9068 
0.9190 
0.8808 
0.8780 

0.3067 
0.2622 
0.2622 
0.1395 
0.1395 

0.9511 
0.9094 
0.9232 
0.8883 
0.8870 

0.3044 
0.2621 
0.2621 
0.0903 
0.0903 

0.9612 
0.9300 
0.9431 
0.9253 
0.9253 

0.3068 
0.2628 
0.2628 
0.0679 
0.0680 

(100,80)  BCa
BTI 
BTII 
HBELI 
HBELII 

0.9732 
0.9200 
0.9275 
0.9260 
0.9258 

0.2182 
0.1702 
0.1702 
0.1580 
0.1581 

0.9658 
0.9107 
0.9210 
0.9110 
0.9115 

0.2182 
0.1691 
0.1691 
0.1180 
0.1181 

0.9593 
0.9009 
0.9102 
0.9108 
0.9095 

0.2194 
0.1700 
0.1700 
0.0700 
0.0700 
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Table a- 5 95 per cent confidence interval for the difference of sensitivities between the two clinical assessments with and without the 
use of dermatoscopy 
 
Specificity      Bca BTI BTII HBELI HBELII
0.90 (-0.261,0.261)     (-0.220,0.394) (-0.302,0.312) (-0.183,0.183) (-0.183,0.183)
0.95      (-0.609,0.479) (-0.346,0.346) (-0.336,0.357) (-0.052,0.052) (-0.052,0.052)
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Appendix II S-plus code for Simulation 
 

1. Normal distribution 
 
############################################################################## 
#          Functions 
#Get sensitivity from abnorm and norm samples at fixed specificity p 
# m: number of bootstrap  
############################################################################### 
sensb<-function(abnorm, norm, p, m) 
{ 
 result <- rep(NA, m) 
 if(m > 1) { 
  for(i in 1:m) { 
   t <- sample(abnorm, length(abnorm), replace = T) 
   u <- sample(norm, length(norm), replace = T) 
   if(max(t) < min(u)) { 
    result[i] <- 0 
   } 
   else { 
    #result[i] <- (sum(t > quantile(u, p))+ k^2/2)/(length(t)+k^2) 
              result[i] <- sum(t > quantile(u, p))/length(t) 
   } 
  } 
 } 
 else result[1] <- sum(abnorm > quantile(norm, p))/length(abnorm) 
 return(result) 
} 
 
 solveNonlinear<-function(f,y0,x) 
 { 
    g<-function(x,y0,f) sum((f(x)-y0)^2) 
    g$y0<-y0 
    g$f<-f 
    nlmin(g,x,max.fcal=100,max.iter=100) 
 } 
 
######################################################### 
#                                                                                                               # 
#                Main Program                                                                        # 
######################################################### 
 
mm<-1000   # number of repetition 
m<-80    # sample sizes of non-diseased samples  
n<-80 
 
tt<-0.7     # Specificity level tt  
#tt<-0.8 
#tt<-0.7 
 
rho=0 
 
alpha<-0.05 
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Cvalue<-qchisq(1-alpha,1)  #chi-sq(1-alpha,1) 
 
# sensitivity 1 -sensitivity 2 =0 
ss1<-c(0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10)  #R1(t)  sensitivity 1 
ss2<-c(0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10)  #R2(t)  sensitivity 2 
 
inrange1<-0 
logltzero<-0  #record the number which less than zero in LDp 
 
Dp.low<-0 
Dp.up<-0 
nlow<-0   #if the function is converage, nlow+1 
nup<-0   
 
Dp2.low<-0 
Dp2.up<-0 
nlow2<-0   #idicator whether the function is converage, nlow2+1 
nup2<-0 
 
inrange2<-0 
 
for (i in 1:length(ss1)) 
{ 
 cov1<-cov2<-0        # coverage 
 
 for (j in 1:mm) 
 { 
  mud1<-qnorm(tt,0,1)-2*qnorm(1-ss1[i],0,1)   # mean of the first  
                                                       diseased population 
   mud2<-qnorm(tt,0,1)-2*qnorm(1-ss2[i],0,1)   # mean of the second  
                                                        diseased population 
  Rtt1<-1-pnorm(qnorm(tt,0,1),mud1,2)         #the first true sensitivity 
  Rtt2<-1-pnorm(qnorm(tt,0,1),mud2,2) 
 Rtt<-Rtt1-Rtt2                #the difference of two true sensitivities 
   
 
#############  step 1 ############################ 
# Generate diseased and non-diseased distribution 
################################################## 
# generate two samples from the nondiseased populations: 
 
 xx<-rmvnorm(m, mean=c(0,0), cov=matrix(c(1,rho,rho,1),2))   
 
 x10<-xx[,1]    # the sample from the first nondiseased population 
 x20<-xx[,2]    # the sample from the second nondiseased population 
 
# generate two samples from the deseased populations: 
 yy<-rmvnorm(n, mean=c(mud1, mud2), ov=matrix(c(4,rho*2*2,rho*2*2,4),2))    
 
# the sample from 2-dimensinal multinomial distribution with mean=c(mud1, mud2),sd=2, and correlation=0.5 
 y11<-yy[,1]            # the sample from the first diseased population 
 y21<-yy[,2]            # the sample from the second diseased population 
 
# Two estimated sensitivities at specificity (tt): 
 
      sens1<-sum((yy[,1] >=quantile(xx[,1],tt)))/n    # estimated sensitivity  
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                                                       from the first sample 
 sens2<-sum((yy[,2] >=quantile(xx[,2],tt)))/n    # estimated sensitivity  
                                                       from the second sample 
 
 
 #############  step 2 ############################# 
 #Bootstrap 
 # Generate diseased and non-diseased distribution 
#################################################### 
B=150 
 
 #get sensitivity from bootstrap samples  
 Rb1<-sensb(y11, x10,tt,B) 
 Rb2<-sensb(y21, x20,tt,B)  
  
 vb1<-sum((Rb1-mean(Rb1))^2)/(B-1)                              # V_1^*(t)     
 vb2<-sum((Rb2-mean(Rb2))^2)/(B-1) 
 
 vb12<-0 
 if (rho!=0) 
  vb12<-sum( (Rb1-mean(Rb1))*(Rb2-mean(Rb2)) )/(B-1) 
  
 vb<-vb1+vb2-2*vb12     # Bootstrap variance estimate 
  
 #############  step 3 ############################# 
 R1<-0 
 R2<-0 
 if(vb!=0)  
 { 
  R1<-(mean(Rb1)*(1-mean(Rb1))+mean(Rb2)*(1-mean(Rb2)))/(n*vb)  #estimate  
                                                       for the scale constant 
  R2<-( sens1*(1-sens1) + sens2*(1-sens2) )/(n*vb) 
   
 ############Calculate L(D(p))######### 
 f1<-2 
 f2<-2 
 
  u11hat<-rep(100,n) 
  u22hat<-rep(100,n) 
 
 for(ii in 1:n)        # hat Uk=1-F(Yk) 
 { 
  u11hat[ii]<-1-mean(x10<=y11[ii]) 
  u22hat[ii]<-1-mean(x20<=y21[ii])      
 } 
   
 v11hat<-(u11hat<=tt)*1   # indicator function of U:I(U_j<=p) 
 v22hat<-(u22hat<=tt)*1 
 
 ########solove R_1(p), R_2(p) and lambda ########### 
 
 g<-function(x,v1h=v11hat, v2h=v22hat) 
    { 
    y_numeric(3) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
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     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean( v11hat/(1- 
                       2*x[3]*(v11hat-x[1]))) 
 y 
 } 
  
 sol<-solveNonlinear(g,c(0,0,Rtt),c(Rtt1,Rtt2,0))  
     # c(Rtt1,Rtt2,0) are initial values of  
                                c(R_1(p), R_2(p), lambda) 
 
 newr1<-sol$x[1] 
 newr2<-sol$x[2] 
 lambda<-sol$x[3] 
 
 w11hat<-v11hat-newr1 
 w22hat<-v22hat-newr2 
 
###### test the number when (1-2*lambda*w11hat or 1+2*lambda*w22hat <0 
flag<-0 
for(ii in 1:n)   { 
 if ((1-2*lambda*w11hat[ii])<0 || (1+2*lambda*w22hat[ii])<0)  
 flag<-1 
} 
if(flag=1) logltzero<-logltzero+1 
 
 LDp<-2*( sum(log(abs(1-2*lambda*w11hat)))+sum(log(abs(1+2*lambda*w22hat))))    
 
###using abs here 
# LDp<-2*( sum(log(1-2*lambda*w11hat))+sum(log(1+2*lambda*w22hat)))    
 
inrange1<-inrange1 + (R1*LDp<qchisq(1-alpha,1))*1 
inrange2<-inrange2 + (R2*LDp<qchisq(1-alpha,1))*1 
 
########solove R_1(p), R_2(p) ,lambda, D(p) to find confidence interval of D(p)  04/24/2007########### 
 
 f<-function(x,v1h=v11hat, v2h=v22hat c=Cvalue) 
    { 
    y_numeric(4) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean(v11hat/(1-2*x[3]*(v11hat-x[1])))-x[4] 
       y[4]_R1*2*( sum(log(abs(1-2*x[3]*(v11hat-x[1]))))+sum(log(abs(1+2*x[3]*(v22hat-x[2])))))-Cvalue 
   
  y 
 } 
  
 solf1<-solveNonlinear(f,c(0,0,0,0),c((Rtt1+0.1),(Rtt2-0.1),0,0.2)) #initial values  
 if(solf1$converged = T)  
{ 
 nlow<-nlow+1  
   Dp.low<-Dp.low+solf1$x[4] 
 } 
 solf2<-solveNonlinear(f,c(0,0,0,0),c((Rtt1-0.1),(Rtt2+0.1),0,-0.2))  
 if(solf2$converged = T)  
{  
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 nup<-nup+1 
   Dp.up<-Dp.up+solf2$x[4] 
 } 
 
 
########solove R_1(p), R_2(p) ,lambda, D(p) to find confidence interval of D(p) by using R2  
04/24/2007########### 
 
 f<-function(x,v1h=v11hat, v2h=v22hat c=Cvalue) 
    { 
    y_numeric(4) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean(v11hat/(1-2*x[3]*(v11hat-x[1])))-x[4] 
       y[4]_R2*2*( sum(log(abs(1-2*x[3]*(v11hat-x[1]))))+sum(log(abs(1+2*x[3]*(v22hat-x[2])))))-Cvalue 
   
  y 
 } 
  
 solf3<-solveNonlinear(f,c(0,0,0,0),c((Rtt1+0.1),(Rtt2-0.1),0,0.2)) #initial values  
 if(solf3$converged = T)  
{ 
 nlow2<-nlow2+1  
   Dp2.low<-Dp.low+solf1$x[4] 
 } 
 solf4<-solveNonlinear(f,c(0,0,0,0),c((Rtt1-0.1),(Rtt2+0.1),0,-0.2))  
 if(solf4$converged = T)  
{  
 nup2<-nup2+1 
   Dp2.up<-Dp.up+solf2$x[4] 
 } 
 
 
} #end of if(vb!=0) 
 
} #end of loop for (j in 1:mm) 
  
 } #end of loop for (i in 1:length(ss1)) 
  
newcov1<-inrange1/(10*mm) 
newcov2<-inrange2/(10*mm) 
if(nlow & nup) 
{ 
 Dplow<-min(Dp.low/nlow,Dp.up/nup) 
 Dpup<-max(Dp.low/nlow,Dp.up/nup) 
} 
 
Dplength<-max(Dpup,Dplow)-min(Dpup,Dplow) 
 
if(nlow2 & nup2) 
{ 
 Dp2low<-min(Dp2.low/nlow2, Dp2.up/nup2) 
 Dp2up<-max(Dp2.low/nlow2, Dp.up/nup2) 
} 
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Dplength2<-max(Dp2up,Dp2low)-min(Dp2up, Dp2low) 
 
  
#Result Output 
sink("D:\\Suqin\\normalresult1.txt",append = T) 
 
cat("#####################################\n"); 
cat(" specifciity=",tt, "\n") 
cat(" rho=",rho, "\n") 
cat(" Non-disease sample m=", m, " disease sample n=", n, "iteration mm=", mm, "\n") 
cat(" Number of log <0 ",logltzero,"\n\n"); 
 
cat(" Coverage1=", newcov1,"\n"); 
cat(" Dp  Lower bound 1=", Dplow, " Up bound 1=", Dpup, "\n") 
cat(" Coverage length 1 =", Dplength,"\n") 
cat(" Number of converge nlow1=", nlow, "  nup1=", nup,"\n\n") 
 
cat(" Coverage2=", newcov2,"\n"); 
cat(" Dp  Lower bound 2=", Dp2low, " Up bound 2=", Dp2up, "\n") 
cat(" Coverage length 2 =", Dplength2,"\n") 
cat(" Number of converge nlow2=", nlow2, "  nup2=", nup2,"\n") 
 
cat("######################################\n"); 
 
sink(); 
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2. Exponential distribution – no correlation 
 
######################################################### 
#                                                       # 
#                Main Program                           # 
######################################################### 
 
mm<-1000   # number of repetition 
m<-150    # sample sizes of non-diseased samples  
n<-80        # sample sizes of diseased samples 
 
tt<-0.9     # Specificity level tt  
#tt<-0.8 
#tt<-0.7 
 
rho=0 
 
 
alpha<-0.05 
Cvalue<-qchisq(1-alpha,1)  #chi-sq(1-alpha,1) 
 
# sensitivity 1 -sensitivity 2 =0 
ss1<-c(0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10)  #R1(t)  sensitivity 1 
ss2<-c(0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10)  #R2(t)  sensitivity 2 
 
 
inrange1<-0 
logltzero<-0  #record the number which less than zero in LDp 
 
Dp.low<-0 
Dp.up<-0 
nlow<-0   #if the function is converage, nlow+1 
nup<-0   
 
Dp2.low<-0 
Dp2.up<-0 
nlow2<-0   #idicator whether the function is converage, nlow2+1 
nup2<-0 
 
inrange2<-0 
 
for (i in 1:length(ss1)) 
{ 
 cov1<-cov2<-0        # coverage 
  
  l1<-log(ss1[i])/log(1-tt)            # rate of the Exp(l1) (first diseased 

population) (rate=1/expectation) 
    l2<-log(ss2[i])/log(1-tt)          # rate of the Exp(l2) (second diseased 

population) 
   
 Rtt1<-exp(l1*log(1-tt)) 
   Rtt2<-exp(l2*log(1-tt)) 
   Rtt<-Rtt1-Rtt2                             # the difference of two true 

sensitivities 
 
 for (j in 1:mm) 
 { 
 # mud1<-qnorm(tt,0,1)-2*qnorm(1-ss1[i],0,1)   # mean of the first diseased 

population 
  # mud2<-qnorm(tt,0,1)-2*qnorm(1-ss2[i],0,1)   # mean of the second diseased 

population 
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  # Rtt1<-1-pnorm(qnorm(tt,0,1),mud1,2)          #the first true sensitivity 
  # Rtt2<-1-pnorm(qnorm(tt,0,1),mud2,2) 
  # Rtt<-Rtt1-Rtt2                             # the difference of two true 

sensitivities 
   
 
#############  step 1 ############################ 
# Generate diseased and non-diseased distribution 
################################################## 
   
#Exponential distribution           
# two dependent samples from the nondiseased populations: 
 
 x10<-rexp(m,1)   # Exp(1):the sample from the first nondiseased population 
 x20<-rexp(m,1)   # Exp(1):the sample from the second nondiseased population 
  
# two dependent samples from the deseased populations: 
 
 y11<-rexp(n,l1)   # Exp(l1):the sample from the first diseased population 
 y21<-rexp(n,l2)   # Exp(l2):the sample from the second diseased population 
 
 sens1<-sum((y11 >=quantile(x10,tt)))/n    # estimated sensitivity from the first 

sample 
 sens2<-sum((y21 >=quantile(x20,tt)))/n    # estimated sensitivity from the second 

sample 
  
 
 
 #############  step 2 ############################# 
 #Bootstrap 
 # Generate diseased and non-diseased distribution 
#################################################### 
B=150 
 
 #get sensitivity from bootstrap samples  
 Rb1<-sensb(y11, x10,tt,B) 
 Rb2<-sensb(y21, x20,tt,B)  
  
 vb1<-sum((Rb1-mean(Rb1))^2)/(B-1)                              # V_1^*(t)     
 vb2<-sum((Rb2-mean(Rb2))^2)/(B-1) 
 
 vb12<-0 
 if (rho!=0) 
  vb12<-sum( (Rb1-mean(Rb1))*(Rb2-mean(Rb2)) )/(B-1) 
  
 vb<-vb1+vb2-2*vb12     # Bootstrap variance estimate 
  
 #############  step 3 ############################# 
 R1<-0 
 R2<-0 
 if(vb!=0)  
 { 
  R1<-(mean(Rb1)*(1-mean(Rb1))+mean(Rb2)*(1-mean(Rb2)))/(n*vb)  #estimate for the 

scale constant 
  R2<-( sens1*(1-sens1) + sens2*(1-sens2) )/(n*vb) 
   
 ############Calculate L(D(p))######### 
 f1<-2 
 f2<-2 
 
  u11hat<-rep(100,n) 
  u22hat<-rep(100,n) 
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 for(ii in 1:n)        # hat Uk=1-F(Yk) 
 { 
  u11hat[ii]<-1-mean(x10<=y11[ii]) 
  u22hat[ii]<-1-mean(x20<=y21[ii])      
 } 
   
 v11hat<-(u11hat<=tt)*1   # indicator function of U:I(U_j<=p) 
 v22hat<-(u22hat<=tt)*1 
 
 ########solove R_1(p), R_2(p) and lambda ########### 
 
 g<-function(x,v1h=v11hat, v2h=v22hat) 
    { 
    y_numeric(3) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean( v11hat/(1-2*x[3]*(v11hat-

x[1]))) 
   
  y 
 } 
  
 sol<-solveNonlinear(g,c(0,0,Rtt),c(Rtt1,Rtt2,0))  
     # c(Rtt1,Rtt2,0) are initial values of c(R_1(p), R_2(p), lambda) 
 
 newr1<-sol$x[1] 
 newr2<-sol$x[2] 
 lambda<-sol$x[3] 
 
 w11hat<-v11hat-newr1 
 w22hat<-v22hat-newr2 
 
###### test the number when (1-2*lambda*w11hat or 1+2*lambda*w22hat <0 
flag<-0 
for(ii in 1:n)   { 
 if ((1-2*lambda*w11hat[ii])<0 || (1+2*lambda*w22hat[ii])<0)  
 flag<-1 
} 
if(flag=1) logltzero<-logltzero+1 
 
 LDp<-2*( sum(log(abs(1-2*lambda*w11hat)))+sum(log(abs(1+2*lambda*w22hat))) )   

###using abs here 
# LDp<-2*( sum(log(1-2*lambda*w11hat))+sum(log(1+2*lambda*w22hat)))    
 
inrange1<-inrange1 + (R1*LDp<qchisq(1-alpha,1))*1 
inrange2<-inrange2 + (R2*LDp<qchisq(1-alpha,1))*1 
 
########solove R_1(p), R_2(p) ,lambda, D(p) to find confidence interval of D(p)  

04/24/2007########### 
 
 f<-function(x,v1h=v11hat, v2h=v22hat c=Cvalue) 
    { 
    y_numeric(4) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean(v11hat/(1-2*x[3]*(v11hat-

x[1])))-x[4] 
       y[4]_R1*2*( sum(log(abs(1-2*x[3]*(v11hat-x[1]))))+sum(log(abs(1+2*x[3]*(v22hat-

x[2])))))-Cvalue 
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  y 
 } 
  
 solf1<-solveNonlinear(f,c(0,0,0,0),c((Rtt1+0.1),(Rtt2-0.1),0,0.2)) #initial values  
 if(solf1$converged = T)  
{ 
 nlow<-nlow+1  
   Dp.low<-Dp.low+solf1$x[4] 
 } 
 solf2<-solveNonlinear(f,c(0,0,0,0),c((Rtt1-0.1),(Rtt2+0.1),0,-0.2))  
 if(solf2$converged = T)  
{  
 nup<-nup+1 
   Dp.up<-Dp.up+solf2$x[4] 
 } 
 
 
########solove R_1(p), R_2(p) ,lambda, D(p) to find confidence interval of D(p) by 

using R2  04/24/2007########### 
 
 f<-function(x,v1h=v11hat, v2h=v22hat c=Cvalue) 
    { 
    y_numeric(4) 
    
     y[1]_mean( (v11hat-x[1])/(1-2*x[3]*(v11hat-x[1])) ) 
     y[2]_mean( (v22hat-x[2])/(1+2*x[3]*(v22hat-x[2])) ) 
     y[3]_mean( v22hat/(1+2*x[3]*(v22hat-x[2]))) - mean(v11hat/(1-2*x[3]*(v11hat-

x[1])))-x[4] 
       y[4]_R2*2*( sum(log(abs(1-2*x[3]*(v11hat-x[1]))))+sum(log(abs(1+2*x[3]*(v22hat-

x[2])))))-Cvalue 
   
  y 
 } 
  
 solf3<-solveNonlinear(f,c(0,0,0,0),c((Rtt1+0.1),(Rtt2-0.1),0,0.2)) #initial values  
 if(solf3$converged = T)  
{ 
 nlow2<-nlow2+1  
   Dp2.low<-Dp.low+solf1$x[4] 
 } 
 solf4<-solveNonlinear(f,c(0,0,0,0),c((Rtt1-0.1),(Rtt2+0.1),0,-0.2))  
 if(solf4$converged = T)  
{  
 nup2<-nup2+1 
   Dp2.up<-Dp.up+solf2$x[4] 
 } 
 
 
} #end of if(vb!=0) 
 
    
 
 } #end of loop for (j in 1:mm) 
  
 
 } #end of loop for (i in 1:length(ss1)) 
  
 
newcov1<-inrange1/(10*mm) 
newcov2<-inrange2/(10*mm) 
if(nlow & nup) 
{ 
 Dplow<-min(Dp.low/nlow,Dp.up/nup) 
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 Dpup<-max(Dp.low/nlow,Dp.up/nup) 
} 
 
#Dplow<-Dp.low/(10*mm) 
#Dpup<-Dp.up/(10*mm) 
Dplength<-max(Dpup,Dplow)-min(Dpup,Dplow) 
 
if(nlow2 & nup2) 
{ 
 Dp2low<-min(Dp2.low/nlow2, Dp2.up/nup2) 
 Dp2up<-max(Dp2.low/nlow2, Dp.up/nup2) 
} 
 
Dplength2<-max(Dp2up,Dp2low)-min(Dp2up, Dp2low) 
 
  
#Result Output 
sink("D:\\Suqin\\Expind_rhoeq0.txt",append = T) 
 
cat("#######Exponential Distribution ##############################\n"); 
cat(" specificity=",tt, "\n") 
cat(" rho=",rho, "\n") 
cat(" Non-disease sample m=", m, " disease sample n=", n, "iteration mm=", mm, "\n") 
cat(" Number of log <0 ",logltzero,"\n\n"); 
 
cat(" Coverage1=", newcov1,"\n"); 
cat(" Dp  Lower bound 1=", Dplow, " Up bound 1=", Dpup, "\n") 
cat(" Coverage length 1 =", Dplength,"\n") 
cat(" Number of converge nlow1=", nlow, "  nup1=", nup,"\n\n") 
 
cat(" Coverage2=", newcov2,"\n"); 
cat(" Dp  Lower bound 2=", Dp2low, " Up bound 2=", Dp2up, "\n") 
cat(" Coverage length 2 =", Dplength2,"\n") 
cat(" Number of converge nlow2=", nlow2, "  nup2=", nup2,"\n") 
 
cat("######################################\n"); 
 
sink(); 
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3. Exponential distribution – correlation  
…( Specificity and sample size setting are the same as exponential distribution 

without correlation)… 
 
  expcov<-0.02 
 
 l1<-log(ss1[i])/log(1-tt)-expcov           # rate of the Exp(l1) (first diseased 

population) (rate=1/expectation) 
 l2<-log(ss2[i])/log(1-tt)-expcov         # rate of the Exp(l2) (second diseased 

population) 
 
 
 Rtt1<-exp((l1+expcov)*log(1-tt)) 
 Rtt2<-exp((l2+expcov)*log(1-tt)) 
 Rtt<-Rtt1-Rtt2                             # the difference of two true sensitivities 
   
 mnb1<-mnb2<-mnb3<-0 
 LUb1<-LUb3<-0 
    
for (j in 1:mm) 
{ 
 
explambda<-0.5 
 
 u1<-rexp(m,explambda) 
 u2<-rexp(m,explambda) 
 u3<-rexp(m,explambda) 
 
 
# two dependent samples from the nondiseased populations: 
 x10<-x20<-0 
 for (k in 1:m) 
{ 
 x10[k]<-min(u1[k],u3[k])         # Exp(1):the sample from the first nondiseased 

population 
 x20[k]<-min(u2[k],u3[k])         # Exp(1):the sample from the second nondiseased 

population 
} 
 
# two dependent samples from the deseased populations: 
 
 v1<-rexp(n,l1) 
 v2<-rexp(n,l2) 
 v3<-rexp(n,expcov) 
 
 y11<-y21<-0 
 for (k in 1:n) 
{ 
 y11[k]<-min(v1[k],v3[k])             # Exp(l1+0.01):the sample from the first 

diseased population 
 y21[k]<-min(v2[k],v3[k])             # Exp(l2+0.01):the sample from the second 

diseased population 
} 
 
# Two estimated sensitivities at specificity (tt): 
 
X1.hat<-sum((y11 >=quantile(x10,tt)))  
sens1<-X1.hat/n          # estimated sensitivity from the first sample 
 
X2.hat<-sum((y21 >=quantile(x20,tt)))  
sens2<-X2.hat/n          # estimated sensitivity from the second sample 
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…(Same as exponential distribution without correlation)… 
}  
 
#Result Output 
 
sink("D:\\Suqin\\Exponential_Rhogt0_result.txt",append = T) 
 
cat("#######Exponential Distribution ##############################\n"); 
cat(" specificity=",tt, "\n") 
cat("Exponential lambda=",explambda," expcov=",expcov,"\n") 
cat(" rho>0","inlambda=",inlambda, "\n") 
cat(" Non-disease sample m=", m, " disease sample n=", n, "iteration mm=", mm, "\n") 
cat(" Number of log <0 ",logltzero,"\n\n"); 
 
cat(" Coverage1=", newcov1,"\n"); 
cat(" Dp  Lower bound 1=", Dplow, " Up bound 1=", Dpup, "\n") 
cat(" Coverage length 1 =", Dplength,"\n") 
cat(" Number of converge nlow1=", nlow, "  nup1=", nup,"\n\n") 
 
cat(" Coverage2=", newcov2,"\n"); 
cat(" Dp  Lower bound 2=", Dp2low, " Up bound 2=", Dp2up, "\n") 
cat(" Coverage length 2 =", Dplength2,"\n") 
cat(" Number of converge nlow2=", nlow2, "  nup2=", nup2,"\n") 
 
cat("######################################\n"); 
 
sink(); 
} 
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4. Dermatoscope example 
 
mm<-1000   # number of repetition 
 
tt<-0.9 
#tt<-0.95 
 
realdata<-read.table("D:\\Suqin\\exam4.SSC",header=F,skip=3) 
##get non-disease nx and disease number ny; 
nx<-0; 
for(i in 1:72) if(realdata[i,4]==0) nx<-nx+1; 
ny<-0; 
for(i in 1:72) if(realdata[i,4]==1) ny<-ny+1; 
m<-nx;   #assign to non-disease group 
n<-ny;   #assign to disease group 
 
xx<-matrix(0,nx,2) 
yy<-matrix(0,ny,2) 
 
xi<-1; 
yi<-1; 
for (r1 in 1:72) 
{  
 if (realdata[r1,4]==0) { xx[xi,1]<-realdata[r1,2];xx[xi,2]<-realdata[r1,3]; xi<-xi+1} 
 else { yy[yi,1]<-realdata[r1,2]; yy[yi,2]<-realdata[r1,3];yi<-yi+1;} 
} 
 
x10<-xx[,1]             # the sample from the first nondiseased population 
x20<-xx[,2]             # the sample from the second nondiseased population 
 
y11<-yy[,1]             # the sample from the first diseased population 
y21<-yy[,2]         
 
{The following part is the same as normal distribution} 
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